1 Introduction to Differential Equations Exercises 1.1 1. Second- ordain; additive. 2. Third-order; nonlinear because of (dy/dx)4 . 3. The di?erential par is ?rst-order. Writing it in the get to x(dy/dx) + y 2 = 1, we look to that it is nonlinear in y because of y 2 . However, create verbally it in the form (y 2 ? 1)(dx/dy) + x = 0, we manipulate that it is linear in x. 4. The di?erential equation is ?rst-order. Writing it in the form u(dv/du) + (1 + u)v = ueu we see that it is linear in v. However, writing it in the form (v + uv ? ueu )(du/dv) + u = 0, we see that it is nonlinear in u. 5. Fourth-order; linear 6. Second-order; nonlinear because of romaine(r + u) 7. Second-order; nonlinear because of 1 + (dy/dx)2 8. Second-order; nonlinear because of 1/R2 9. Third-order; linear 10. Second-order; nonlinear because of x2 ? 11. From y = e?x/2 we let y = ? 1 e?x/2 . Then 2y + y = ?e?x/2 + e?x/2 = 0. 2 12. From y = 6 5 ? 6 e?20t we capture dy/dt = 24e?20t , so that 5 dy + 20y = 24e?20t + 20 dt 6 6 ?20t ? e 5 5 = 24. = 5e3x cos 2x ? 12e3x sin 2x, so that 13. From y = e3x cos 2x we master y = 3e3x cos 2x ? 2e3x sin 2x and y y ? 6y + 13y = 0. y = tan x + cos x ln(sec x + erythema solare x). Then y + y = tan x. 14. From y = ? cos x ln(sec x + tan x) we obtain y = ?1 + sin x ln(sec x + tan x) and 15.
Writing ln(2X ? 1) ? ln(X ? 1) = t and di?erentiating implicitly we obtain 2 dX 1 dX ? =1 2X ? 1 dt X ? 1 dt 2 1 ? 2X ? 1 X ? 1 dX =1 dt -4 -2 -2 -4 X 4 2 2 4 t 2X ? 2 ? 2X + 1 dX =1 (2X ? 1)(X ? 1) dt dX = ?(2X ? 1)(X ? 1) = (X ? 1)(1 ? 2X). dt Exponentiating both side s of the implicit effect we obtain 2X ?! 1 et ? 1 = et =? 2X ? 1 = Xet ? et =? (et ? 1) = (et ? 2)X =? X = t . X ?1 e ?2 Solving et ? 2 = 0 we get t = ln 2. Thus, the resolving power is de?ned on (??, ln 2) or on (ln 2, ?). The graph of the solution de?ned on (??, ln 2) is dashed, and the graph of the solution de?ned on (ln 2, ?) is solid. 1 Exercises 1.1 16. Implicitly di?erentiating the solution we obtain dy dy...If you want to get a full essay, order it on our website: OrderCustomPaper.com
If you want to get a full essay, visit our page: write my paper
No comments:
Post a Comment